Selasa, 04 Februari 2014

tugas..kimia

1. Pengertian Minyak Bumi
Minyak bumi (bahasa Inggris: petroleum, dari bahasa Latin petrus – karang dan oleum – minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerak Bumi. Minyak bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya.
2. Teori Pembentukan Minyak Bumi
Membahas identifikasi minyak bumi tidak dapat lepas dari bahasan teori pembentukan minyak bumi dan kondisi pembentukannya yang membuat suatu minyak bumi menjadi spesifik dan tidak sama antara suatu minyak bumi dengan minyak bumi lainnya. Berikut ini akan dibahas 2 teori pembentukan minyak bumi.
  1. Teori Biogenesis (Organik)
Macquir (Prancis, 1758) merupakan orang pertama yang pertama kali mengemukakan pendapat bahwa minyak bumi berasal darri umbuh-tumbuhan. Kemudian M.W Lamanosow (Rusia, 1763) juga mengemukakan hal yang sama. Pendapat di atas juga didukun oleh sarjana lain seperti, Nem Beery, Engler, Bruk, bearl, Hofer. Meeka mengatakan bahwa ”minyak dan gas bumi berasal dari organisme laut yan telah mati berjuta-juta tahun yang lalu dan membentuk sebuah lapisan dalam perut bumi.”
  1. Teori Abiogenesis (Anorganik)
Barthelot (1866) mengemukakan di dalam minyak bumi terdapat logam alkali, yang dalam keadaan bebas dengan temperatur tingi akan bersentuhan denagn C02 membentuk asitilena. Kemudian Mendeleyev (1877) mengemukakan bahwa minyak bumi tebentuk akibat adanya pengauh kerja uap pada kabida-karbida logam di dalm bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang mengemukakan bahwa minyak bumi mulai terbentuk sejak zamn prasejarah, jauh sebelum bumi terbentuk dan besamaan dengan proses terbentuknya bumi.pernyataan itu berdasar fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir bebeapa planet lain.
  1. Komponen Minyak Bumi
Minyak bumi hasil ekplorasi (pengeboran) masih berupa minyak mentah atau crude oil. Minyak mentah ini mengandung berbagai zat kimia berwujud gas, cair, dan padat. Komponen utama minyak bumi adalah senyawa hidrokarbon, baik alifatik, alisiklik, maupun aromatik. Kadar unsur karbon dalam minyak bumi dapat mencapai 50%-85%, sedangkan sisanya merupakan campuran unsur hydrogen dan unsur-unsur lain. Misalnya, nitrogen (0-0,5%), belerang (0-6%), dan oksigen (0-3,5%).
1. Senyawa hidokarbon alifatik rantai lurus
Senyawa hidokabon alifatik rantai luus biasa disebut alkana atau normal parafin. Senyawa ini banyak terdapat dalam gas alam dan minyak bumi yang memiliki antai karbon pendek. Contoh: Etana Propana
  1. Senyawa hidrokarbon bentuk siklik
Senyawa hidrokarbon siklik merupakan snyawa hidrokarbon golongan sikloalkana atau sikloparafin. Senyawa hidrokarbon ini memiliki rumus molekul sama dengan alkena., tetapi tidak memiliki ikatan rangkap dua dan membentuk dtruktur cinicin. Dalam minyak bumi, antarmolekul siklik tersebut kadag-kadanag bergabung membentuk suatu molekul yang terdii atas beberapa senyawa siklik.
  1. Senyawa Hidrokarbon Alifatik Rantai Bercabang
Senyawa golongan isoalkana atau isoparafin. Jumlah senyawa hidrokarbon ini tidak sebanyak senyawa hidrokarbon alifatik rantai lurus dan senyawa hidrokarbon bentuk siklik.
  1. Senyawa Hidrokarbon Aromatik
Senyawa hidrokarbon aromatik merupakan senyawa hidrokarbon yang berbentuk siklik segienam, berikatan rangkap dua selang-seling, dan merupakan senyawa hidrokarbon tak jenuh. Pada umumnya, senyawa hidrokarbon aromatik ini terdapat dalam minyak bumi yang memiliki jumlah atom C besar.
Minyak bumi ditemukan bersama-sama dengan gas alam. Minyak bumi yang telah dipisahkan dari gas alam disebut juga minyak mentah (crude oil). Minyak mentah dapat dibedakan menjadi:

1. Minyak mentah ringan (light crude oil) yang mengandung kadar logam dan belerang rendah, berwarna terang dan bersifat encer (viskositas rendah).

2. Minyak mentah berat (heavy crude oil) yang mengandung kadar logam dan belerang tinggi, memiliki viskositas tinggi sehingga harus dipanaskan agar meleleh.
  1. PENGOLAHAN MINYAK BUMI
Minyak bumi biasanya berada 3-4 km di bawah permukaan. Minyak bumi diperoleh dengan membuat sumu bor. Minyak mentah yang diperoleh ditampunga dalam kapal tanker atau dialirkan melalui pipa ke stasiun tangki atau ke kilang minyak.
Minyak mentah (crude oil) bebentuk caian kental hitam dan berbau tidak sedap. Minyak mentah belum dapat digunakan sebagai bahan baka maupun keperluan lainnya, tetapi haus diolah terlebih dahulu. Minyak mentah mengandung sekitar 500 jenis hidrokarbon denagn jumlah atom C-1 hingga 50. Pengolahan minyak bumi dilakukan melalui distilasi bertingkat, dimanaminyak mentah dipisahkan ke dalam kelompok-kelompok dengan rentang titik didih tertentu.
Pengolahan minyak bumi dimulai dengan memanaskan minyak mentah pada suhu 400oC, kemudian dialirkan ke dalam menara fraksionasi dimana akan tejadi pemisahan berdasarkan perbedaan titik didih. Komponen yang titik didihnya lebih tinggi akan tetap berupa cairan dan turun ke bawah, sedangkan yang titik didihnya lebih rendah akan menguap dan naik ke bagian atas melalui sungkup-sungkup yang disebut sungkup gelembung.
Sementara itu, semakin ke ats, suhu semakin rendah, sehinga setiap kali komponen dengan titik didih lebih tinggi naik, akan mengembun dan terpisah, sedangkan komponen yang itik didihnya lebih rendah akan terus naik ke bagian atas yang lebih tinggi. Sehingga komponen yang mencapai puncak menara adalah komponen yang pada suhu kamar beupa gas. Komponen berupa gas tadi disebut gas proteleum. Melalui kompresi dan pendinginan, ga sproteleum dicairkan sehingga diperoleh LPG (Liquid Proteleum Gas)
Minyak mentah mengandung berbagai senyawa hidrokarbon dengan berbagai sifat fisiknya. Untuk memperoleh materi-materi yang berkualitas baik dan sesuai dengan kebutuhan, perlu dilakukan tahapan pengolahan minyak mentah yang meliputi proses distilasi, cracking, reforming, polimerisasi, treating, dan blending.
1. Distilasi
Distilasi atau penyulingan merupakan cara pemisahan campuran senyawa berdasarkan pada perbedaan titik didih komponen-komponen penyusun campuran tersebut. Meskipun komposisinya kompleks, terdapat cara mudah untuk memisahkan komponen-komponennya berdasarkan perbedaan nilai titik didihnya, yang disebut proses distilasi bertingkat. Destilasi merupakan pemisahan fraksi-fraksi minyak bumi berdasarkan perbedaan titik didihnya. 

Minyak bumi atau minyak mentah sebelum masuk kedalam kolom fraksinasi (kolom pemisah) terlebih dahulu dipanaskan dalam aliran pipa dalam furnace (tanur) sampai dengan suhu ± 350°C. Minyak mentah yang sudah dipanaskan tersebut kemudian masuk kedalam kolom fraksinasi pada bagian flash chamber (biasanya berada pada sepertiga bagian bawah kolom fraksinasi). Untuk menjaga suhu dan tekanan dalam kolom maka dibantu pemanasan dengan steam (uap air panas dan bertekanan tinggi)

Karena perbedaan titik didih setiap komponen hidrokarbon maka komponen-komponen tersebut akan terpisah dengan sendirinya, dimana hidrokarbon ringan akan berada dibagian atas kolom diikuti dengan fraksi yang lebih berat dibawahnya. Pada tray (sekat dalam kolom) komponen itu akan terkumpul sesuai fraksinya masing-masing.
Pada setiap tingkatan atau fraksi yang terkumpul kemudian dipompakan keluar kolom, didinginkan dalam bak pendingin, lalu ditampung dalam tanki produknya masing-masing. Produk ini belum bisa langsung dipakai, karena masih harus ditambahkan aditif (zat penambah).
  1. Cracking
Cracking adalah penguraian (pemecahan) molekul-molekul senyawa hidrokarbon yang besar menjadi molekul-molekul senyawa yang lebih kecil. Terdapat dua cara proses cracking, yaitu :
  1. Cara panas (thermal cracking), adalah proses cracking dengan menggunakan suhu tinggi serta tekanan rendah.
  2. Cara katalis (catalytic cracking) adalah proses cracking dengan menggunakan bubuk katalis platina atau molybdenum oksida.
  1. Reforming
Reforming adalah pengubahan bentuk molekul bensin yang bermutu kurang baik (rantai karbon lurus) menjadi bensin yang bermutu lebih baik (rantai karbon bercabang).
4. Polimerisasi
Polimerisasi adalah proses penggabungan molekul-molekul kecil menjadi molekul besar.
  1. Treating
Treating adalah proses pemurnian minyak bumi dengan cara menghilangkan pengotor-pengotornya. Cara-cara proses treating sebagai berikut :
  1. Copper sweetening dan doctor treating
  2. Acid treatment
  3. Desulfurizing (desulfurisasi)
  1. Blending
Bensin merupakan contoh hasil minyak bumi yang banyak digunakan di dunia. Untuk memperoleh kualitas bensin yang baik dilakukan blending (pencampuran), terdapat sekitar 22 bahan pencampur (zat aditif) yang dapat ditambahkan ke dalam proses pengolahannya.

  1. FRAKSI MINYAK BUMI
Senyawa hidrokarbon, terutama parafinik dan aromatik, mempunyai trayek didih masing-masing, dimana panjang rantai hidrokarbon berbanding lurus dengan titik didih dan densitasnya. Semakin panjang rantai hidrokarbon maka trayek didih dan densitasnya semakin besar. Jumlah atom karbon dalam rantai hidrokarbon bervariasi. Untuk dapat dipergunakan sebagai bahan bakar maka dikelompokkan menjadi beberapa fraksi atau tingkatan dengan urutan sederhana sebagai berikut:
Fraksi
Ukuran Molekul
Titik Didih (oC)
Kegunaan
Gas
C1 – C5
-160 – 30
Bahan bakar (LPG), sumber hidrogen
Petoleum eter
C5 – C7
30 – 90
Pelarut, binatu kimia (dry cleaning)
Bensin (gasoline)
C5 – C12
30 - 200
Bahan baka motor
Kerosin, minyak diesel/solar
C12 - C18
180 – 400
Baha bakar mesin diesel, bahan bakar industi, untuk cracking
Minyak pelumas
C16 ke atas
350 ke atas
Pelumas
Parafin
C20 ke atas
Za padat dengan titik cai rendah
Lilin dan lain-lain
Aspal
C25 ke atas
residu
Baha bakar dan untuk pelapis jalan raya
  1. BENSIN (PETROL atau GASOLINE)
Bensin adalah salah satu jenis bahan bakar minyak yang dimaksudkan untuk kendaraan bermoto roda dua, tiga, atau empat. Dewasa ini, tersedia 3 jenis bensin, yaitu premium, petamax, dan peamax plus. Ketiganya mempunyai mutu atau peformance yang berbeda. Adapun mutu bahan bakar bensin dikaitkan dengan jumlah ketukan (knocking) yang ditimbulkannya dan dinyatakn dengan nilai oktan. Semakin sedikit ketukannya, semakin baik mutunya, dan semakin tinggi nilai oktannya.
Ketukan adalah suatu perilaku yang kurang baik dari bahan baka, yaiu pembakaran menjadi terlalu dini sebelum piston berada pada posisi yang tepat. Ketukan menyebabkan mesin menggelitik, mengurangi efisiensi bahan bakar dan dapat merusak mesin.
Untuk menentukan nilai oktan, dietapkan dua jenis senyawa sebagai pembanding yaitu ”isooktana” dan n-hepatana. Kedua senyawa ini adalah dua diantara banyak macam senyawa yang tedapat dalam bensin. Isooktana menghasilkan ketukan palin sedikit dan dibei nilai oktan 100. sedangkan n-heptana menyebabkan keukan paling banyak.
Pertamax mempunyai nilai oktan 92, bearti mutu bahan bakar itu setara denagn campuran 92% isooktana dan 8% n-heptana. Premium mempunyai nilai oktan 88. sedangakan pertamax plus mempunyai nilai 94.
Bilangan oktan bensin dapat juga ditingkatkan dengan cara menambah zat aditif antiketukan, seperti TEL, MTBE, dan etanol.
1. Tetraethyl lead (TEL)
Salah satu anti ketukan yang hingga kini masih digunakan di negara kita adalah Tetraethyl lead (TEL, lead = timbel atau timah hitam) yang rurmus kimianya Pb(C2H5)4. Untuk mengubah Pb dari bentuk padat menjadi gas, pada bensin yang mengandung TEL ditambahkan zat aditif lain, yaitu etilen bromide (C2H2Br). Penambahan 2 – 3 mL zat ini ke dalam 1 galon bensin dapat menaikkan nilai oktan sebesar 15 poin.
2. Methyl Tertier Butyl Ether (MTBE)

Methyl Tertier Butyl Ether (MTBE) Senyawa MTBE memiliki bilangan oktan 118. Senyawa MTBE ini lebih aman dibandingkan TEL karena tidak mengandung logam timbel. 

3. Etanol
Etanol dengan bilangan oktan 123 merupakan zat aditif yang dapat meningkatkan efisiensi pembakaran bensin. Etanol lebih unggul dibandingkan TEL dan MTBE karena tidak mencemari udara dengan logam timbel dan lebih mudah diuraikan oleh mikroorganisme.


Gas Alam

Gas alam sering juga disebut sebagai gas bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang terutama terdiri dari metana (CH4). Ia dapat ditemukan di ladang minyak, ladang gas bumi dan juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas. Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran manusia dan hewan.
Saat ini cadangan gas alam yang dimiliki Indonesia diperkirakan sebesar 134,0 triliun kaki kubik (TCF) yang tersebar di Aceh, Sumatera Utara, Sumatera Tengah, Sumatera Selatan, Jawa Barat, Jawa Tengah, Jawa Timur, Kalimantan Timur, Natuna, Sulawesi Selatan, dan Papua. Meski cadangan sangat besar, kemampuan untuk memproduksi gas tersebut masih sangat terbatas sehingga Indonesia setiap tahun hanya memproduksi gas sekitar 3 TCF. Poduksi gas alam tercatat sebesar 8,6 miliar kaki kubik per hari, dimana 6,6 miliar kaki kubik dari produksi tersebut digunakan untuk ekspor dan sisanya sebesar 2,0 miliar kaki kubik untuk memenuhi kebutuhan dalam negeri yaitu untuk keperluan fertilizers, refinery, petrochemicals, LPG domestik, PGN, PLN, dan industri lainnya. Penerimaan negara dari gas alam rata-rata sebesar 10% dari total penerimaan negara, dan 80% dari jumlah tersebut berasal dari ekspor.
Komponen utama dalam gas alam adalah metana (CHsub>4), yang merupakan molekul hidrokarbon rantai terpendek dan teringan. Gas alam juga mengandung molekul-molekul hidrokarbon yang lebih berat seperti etana (C2H6), propana (C3H8) dan butana (C4H10), selain juga gas-gas yang mengandung sulfur (belerang).

LNG (Liquefied natural gas)
Gas alam cair (LNG) adalah gas alam yang telah diproses untuk menghilangkan ketidakmurnian dan hidrokarbon berat dan kemudian dikondensasi menjadi cairan pada tekanan atmosfer dengan mendinginkannya sekitar -162 °C. Untuk mendinginkan ini diperlukan energi, yang biasanya diwujudkan oleh alat yang disebut refrigerator.
Perubahan wujud juga dapat dilakukan dengan meningkatkan tekanan gas metana (menjadi LNG) dan gas propana (menjadi LPG). Pada temperatur kamar (25 °C) metana akan mulai mencair pada 6.64 bar atau 92.78 psia sementara propana mulai mencair pada 6.31 bar. LNG memiliki isi sekitar 1/600 dari gas alam pada suhu dan tekanan standar, membuatnya lebih hemat untuk transportasi jarak jauh.
LNG memiliki kepadatan energi yang sebanding dengan bahan bakar petrol dan diesel. Pembakaran satu meter kubik gas alam komersial menghasilkan 38 MJ (10.6 kWh). LNG menghasilkan polusi yang lebih sedikit, tetapi biaya produksi yang relatif tinggi dan kebutuhan penyimpanannya yang menggunakan tangki cryogenic yang mahal telah mencegah penggunaannya dalam aplikasi komersial.
Kepadatan LNG kira-kira 0,41-0,5 kg/L, tergantung suhu, tekanan, dan komposisi. Sebagai perbandingan, air memiliki kepadatan 1,0 kg/L.
Kondisi yang dibutuhkan untuk memadatkan gas alam bergantung dari komposisi dari gas itu sendiri, pasar yang akan menerima serta proses yang digunakan, namun umumnya menggunakan suhu sekitar 120 dan -170 °C (methana murni menjadi cair pada suhu -161.6 °C) dengan tekanan antara 101 dan 6000 [kilopascal|kPa] (14.7 dan 870 lbf/in²). Gas alam bertekanan tinggi yang telah didapat kemudian diturunkan tekanannya untuk penyimpanan dan pengiriman.

LPG (Liquefied Petroleum Gas)
LPG (harafiah: "gas minyak bumi yang dicairkan"), adalah campuran dari berbagai unsur hidrokarbon yang berasal dari gas alam. Dengan menambah tekanan dan menurunkan suhunya, gas berubah menjadi cair. Komponennya didominasi propana (C3H8) dan butana (C4H10). Elpiji juga mengandung hidrokarbon ringan lain dalam jumlah kecil, misalnya etana (C2H6) dan pentana (C5H12).
Istilah LPG dan LNG adalah pengistilahan umum untuk gas yang di cairkan baik oleh manusia atau karena keadaan alam. LPG merupakan gas petrol hasil olahan minyak bumi yang dicairkan dengan komponen utama propana dan butana, sedangkan LNG adalah gas cair dengan komponen utama metana. Titik didih LPG pada tekanan atmosfer adalah -42 °C.
Titik didih metana, propana dan butana berada di bawah nol derajat karena pada kondisi ruangan dalam fasa gas. Jadi ketika perpindahan ke fasa cair (titik embun = titik didih) berlangsung di bawah temperatur kamar.
Dalam kondisi atmosfer, elpiji akan berbentuk gas. Volume elpiji dalam bentuk cair lebih kecil dibandingkan dalam bentuk gas untuk berat yang sama. Karena itu elpiji dipasarkan dalam bentuk cair dalam tabung-tabung logam bertekanan. Untuk memungkinkan terjadinya ekspansi panas (thermal expansion) dari cairan yang dikandungnya, tabung elpiji tidak diisi secara penuh, hanya sekitar 80-85% dari kapasitasnya. Rasio antara volume gas bila menguap dengan gas dalam keadaan cair bervariasi tergantung komposisi, tekanan dan temperatur, tetapi biasaya sekitar 250:1.
Tekanan di mana elpiji berbentuk cair, dinamakan tekanan uap-nya, juga bervariasi tergantung komposisi dan temperatur; sebagai contoh, dibutuhkan tekanan sekitar 220 kPa (2.2 bar) bagi butana murni pada 20 °C (68 °F) agar mencair, dan sekitar 2.2 MPa (22 bar) bagi propana murni pada 55 °C (131 °F). Menurut spesifikasinya, elpiji dibagi menjadi tiga jenis yaitu elpiji campuran, elpiji propana dan elpiji butana. Spesifikasi masing-masing elpiji tercantum dalam keputusan Direktur Jendral Minyak dan Gas Bumi Nomor: 25K/36/DDJM/1990. Elpiji yang dipasarkan Pertamina adalah elpiji campuran. Sifat elpiji terutama adalah sebagai berikut:
1. Cairan dan gasnya sangat mudah terbakar.
2. Gas tidak beracun, tidak berwarna dan biasanya berbau menyengat.
3. Gas dikirimkan sebagai cairan yang bertekanan di dalam tangki atau silinder.
4. Cairan dapat menguap jika dilepas dan menyebar dengan cepat.
5. Gas ini lebih berat dibanding udara sehingga akan banyak menempati daerah yang rendah.

NGH (natural gas hydrate)
NGH (natural gas hydrate) adalah kristal es yang terbentuk dimana lapisan es menutupi molekul gas yang terjebak didalamnya. NGH stabil pada tekanan tinggi dan suhu rendah, dan terjadi secara alami di dasar laut yang bertekanan tinggi dan bersuhu rendah pada kedalaman 150-2000 meter dibawah permukaan air laut. Eksplorasi NGH dari dasar laut masih memerlukan 30-40 tahun untuk menjadi ekonomis, yaitu pada saat cadangan energi fosil telah habis. NGH juga terjadi sebagai problem pada pipa saluran gas alam bertekanan tinggi didaerah yang dingin. Terbentuknya NGH dapat menghambat aliran gas pada pipa. Pada saat ini penelitian NGH banyak dilakukan sebagai alternatif sistem pengangkutan dan penyimpanan gas alam, yang selama ini didominasi oleh sistem pemipaan dan gas alam cair (liquefied natural gas, LNG).
Dalam sistem gas alam padat, NGH diproduksi dari percampuran gas alam dengan air untuk membentuk kristal es. Gas alam padat terjadi ketika beberapa partikel kecil dari gas seperti metana, etana, dan propana, menstabilkan ikatan hidrogen dengan air untuk membentuk struktur sangkar 3 dimensi dengan molekul gas alam terjebak dalam sangkar tersebut. Sebuah sangkar terbuat dari beberapa molekul air yang terikat oleh ikatan hidrogen. Tipe ini dikenal dengan nama clathrates. Gas alam padat diperkirakan akan menjadi media baru untuk penyimpanan dan transportasi gas, sebab memiliki stabilitas yang tinggi pada suhu dibawah 0 oC pada tekanan atmosfer. Kestabilan tersebut disebabkan lapisen es yang terjadi pada saat hidrat terurai (terdisosiasi), lapisan es tersebut menutupi hidrat dan mencegah penguraian lebih lanjut. NGH lebih padat dari gas alam, 1 meter kubik NGH setara dengan 170 m3 dari gas alam pada tekaan 1 atm, pada suhu 25 oC.
Sistem gas alam padat meliputi 3 step yaitu, produksi, transportasi dan gasifikasi ulang. Investasi yang digunakan untuk membangun sistem gas alam padat jauh lebih murah dari pada gas alam cair. Dengan sistem gas alam padat, ladang-ladang minyak dengan kapasitas kecil yang tidak memungkinkan diekploitasi dengan sistem gas alam cair dapat dimanfaatkan.

Tidak ada komentar:

Posting Komentar